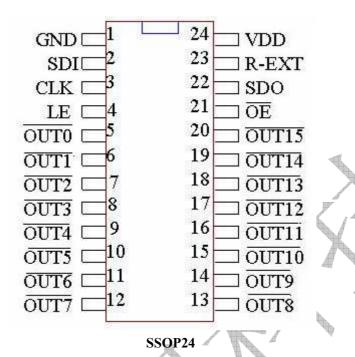

一、 特性描述

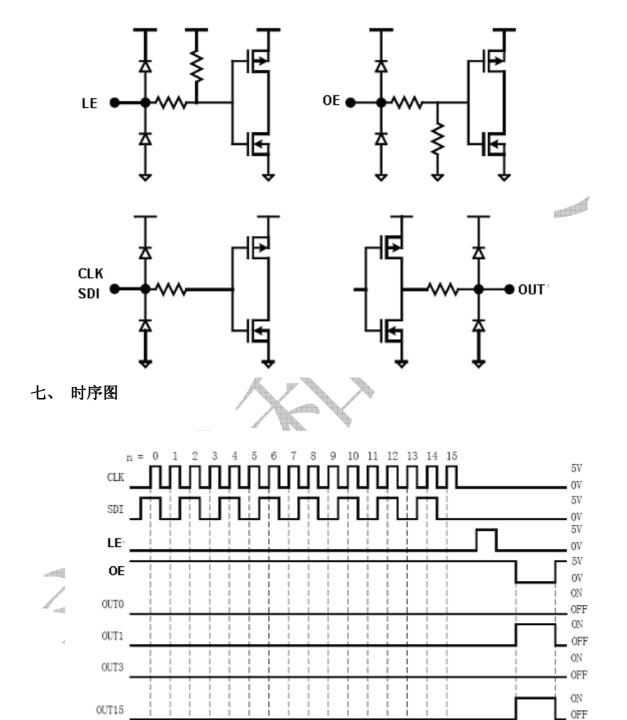
TM1816是LED显示面板设计的驱动IC,它内建的CMOS位移寄存器与锁存功能,可以将串行的输入数据转换成平行输出数据格式。TM1816具有16个电流源,可以在每个输出端口提供3~45mA恒定电流量以驱动LED;且当环境发生变化时,对其输出电流影响很小。同时可以选用不同阻值(R_{EXT})的外接电阻来调整TM1816各输出端口的电流大小,因此,可精确地控制 LED的发光亮度。也可以在每个输出端口串接多个LED。


二、功能特点

- ▶ 16 个恒流源输出通道
- ▶ 电流输出大小不因输出端负载电压变化而变化
- ▶ 恒流电流范围值, 3~45mA@VDD=5V; 3~30mA@VDD=3.3V
- ▶ 极为精确的电流输出值,通道间最大误差: <±3%,芯片间最大误差: <±6%
- ▶ 通过调节外部电阻,可设定电流输出值
- ▶ 高达 25MHz 时钟频率
- ➤ 工作电压: 3.3V~5V
- ▶ 封装形式: SSOP24

三、结构图

四、封装示意图



五、管脚说明

名称	功能说明
GND	控制逻辑及驱动电流的接地端
SDI	串行数据输入端
CLK	时钟信号的输入端,时钟上升时移位数据
LE	数据锁存控制端。当LE是高电平时,串行数据会被传入至输入锁存器; 当LE是低电平时,资料会被锁存
OUT0~OUT15	恒流源输出端
OE	输出使能控制端,当 OE 是低电平时,即会启动 OUT0~OUT15输出;当 OE 是高电平时,OUT0~OUT15输出会被关闭
SDO	串行数据输出端;可接至下一个芯片的 SDI 端口
R—EXT	连接外接电阻的输入端;此外接电阻可设定所有输出通道的输出电流
VDD	芯片电源

5V

六、 输出及输入等效电路

八 、真值表

SD0

don't care

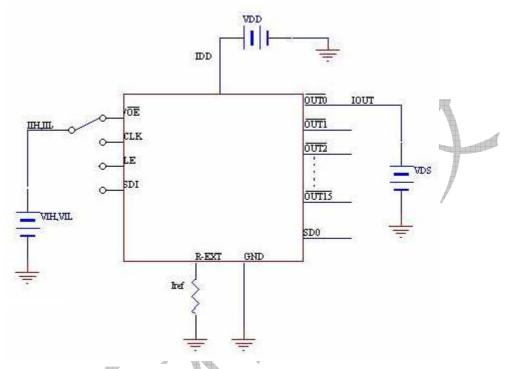
CLK	LE	ŌĒ	SDI	OUT0 OUT7 OUT15	SDO
	Н	Ĺ	D _n	Dn Dn - 7 Dn - 15	D _{n-15}
	L	L	D _{n+1}	No Change	D _{n-14}
	Н	L	D _{n+2}	Dn + 2 Dn - 5 Dn - 13	D _{n-13}
—	Х	L	D _{n+3}	Dn + 2 Dn - 5 Dn - 13	D _{n-13}
₽	X	Н	D _{n+3}	Off	D _{n-13}

九、最大限定范围

特性	代表符号	最大限定范围	单位
电源电压	V DD	0~7.0	V
输入端电压	VIN	-0. 4~VDD+0. 4V	V
输出端电流	Tout	+65	mA
输出端承受电压	V DS	−0. 5∼+17. 0	V
时钟频率	FCLK	25	MHZ
IC 工作时的环境温度	Topr	-40∼+85	
IC 储存时的环境温度	Tstg	−55~+150	

十、直流特性 (VDD=5.0V)

特性	<u></u> 生	代表符号	测量条件 最小值 一般值 最大值		单位		
电源甲	电源电压 V DD		4.5	5.0	5.5	V	
输出端承	输出端承受电压		OUT0~OUT15			18	V
		І о∪т	参考直流特性的测试电路	3		45	mA
SDO 输出	出端电流	І он				-8.2	mA
		I OL				8.2	mA
输出端电	输出高 电平	V 1H	Ta=-40∼85°C	0.7 * VDD		VDD	V
压	输出低 电平	VIL	Ta=-40∼85°C	GND	X	0.3 * VDD	V
输出端》	扇电流	V 0H	VDS=18			0.5	μА
		V 0L	IOL=+1mA	4>		0.4	V
输出端	电压	V 0H	IOH=1mA	4.6			V
输出端	电流 1	I 0UT1	VDS=1V Rext=1246 Ω		15		mA
输出电池		d 10UT2	Iol=26.25mA Rext=1246 Ω VDS=0.6V			±3%	
输出端	电流 2	00Т2	VDS=0.8V Rext=620 Ω		30		mA
输出电流		d 100T2	Iol=52.5mA Rext=620 Ω VDS=0.8V			±3%	
输出电流误差/VDS 变 %/△VDS VDS=1.0 化量		V _{DS} =1.0V~3.0V		±0.1		%/V	
输出端电流 变化		%/∆VDD	VDD=4.5V~5.5V		±1%		%/V
Pull-up	电阻	R IN(up)	0E	250	500	800	ΚΩ
Pull-dow	n电阻	R IN(down)	LE	250	500	800	ΚΩ
	IC 工作电流		Rext=未接, OUT0~ OUT15=OFF		2.5	5.0	
IC I			Rext=1240 Ω , OUT0 \sim OUT15=OFF		4.5	7.0	
			Rext=620 Ω , OUT0 \sim OUT15=OFF		6	9.0	mA
			Rext=1240 Ω , OUT0 \sim OUT15=ON		5.2	8.5	
		IDD(on)2	Rext=620 Ω , OUT0 \sim OUT15=ON		6.5	9.5	

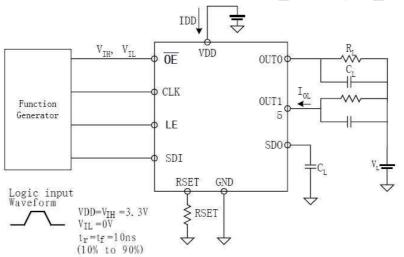

注: Ta 为环境温度

十一、直流特性(VDD=3.3V)

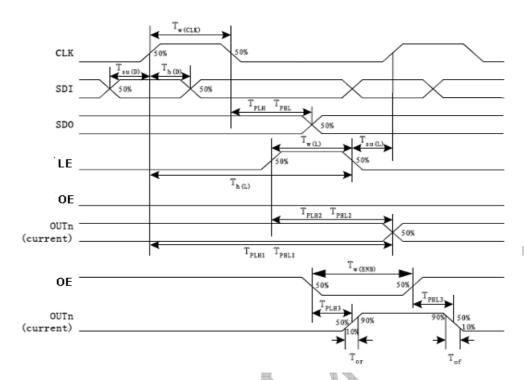
特性	生	代表符号	测量	条件	最小值	一般值	最大值	单位
电源甲	电压	V DD			3.0	3.3	3.6	V
输出端承	输出端承受电压 V DS OUT0~OUT15				18	V		
		I оит	参考直流特性	生的测试电路	3		30	mA
SDO 输出	端电流	І он					-8.2	mA
		 0L					8.2	mA
	输出高	V 1H	Ta=-40	~85℃	0.8VD	X	VDD	V
输出端电	电平	VIH		-	D A			
压	输出低 电平	V IL	Ta=-40	~85℃	GND	4	0.3 * VDD	V
输出断测		V 0H	VDS	s=18			0.5	μА
		V 0L	IoL=	-1mA	/		0.4	V
输出端	电压	V 0H	Іон=	-1mA	4.6			V
输出端	电流 1	OUT1	V _{DS} =1V	Rext=1860 Ω	-	26.25		mA
输出电流		d 10UT2	IoL=26.25m	Rext=1860 Ω		±1	±3%	
			A V _{DS} =1.0V					
输出端	电流 2	Гоит2	VDS=1.0V	Rext=744 Ω		52.5		mA
输出电池		d 100T2	Iol=30mA VDS=1.0V	Rext=744 Ω		±0.1	±3%	
输出电流误差/VDS		%/∆VDS	V _{DS} =1.0	V~3.0V		±1%		%/V
变化	量	A						
输出端电 /VDD 多	. /	%/∆VDD	V _{DD} =3.0	V∼3.6V		500		%/V
Pull-up	电阻	R IN(up)	0	E	250	500	800	ΚΩ
Pull-up	电阻	R IN(down)	L	E	250	500	800	ΚΩ
<i>A</i>			Rext=未接, OUT0~ OUT15=OFF			1.8	5.0	
IC 工作电流		IDD(off)2	Rext=1860 OUT1	Ω, OUT0~		4.1	7.0	
IC 1	化工作电机		Rext=744 9			5.2	9.5	mA
		IDD(off)1	Rext=1860 OUT1	•		4.5	7.0	

Inn/ ma	Rext=744 Ω , OUT0 \sim	 5.4	8.5	
IDD(off)2	OUT15=ON			

十二、直流特性的测试电路

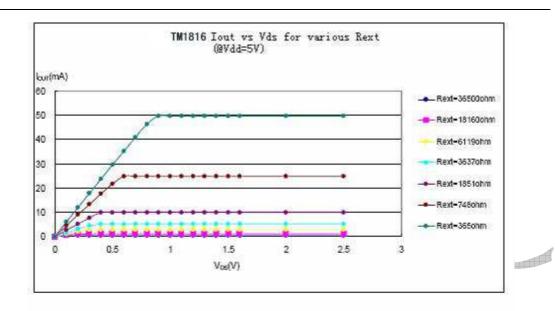

十三、动态特性 (VDD=5.0V)

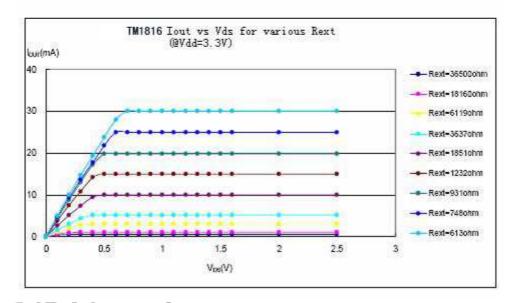
特性		代表符	测量条件	最小值	一般值	最大值	单位
	CLK-OUT	tpLH1			80	100	ns
延迟时间	LE-OUT	tpLH2	$V_{DD}=5.0V$		80	100	ns
(低电平到高电平)	OE-OUT	tpLH3	V _D S=1.0V		115	135	n
	CLK-SD0	tpLH	VIH=Vdd		20	40	ns
	CLK-OUT	tpLH1	V _{IL} =GND		80	100	ns
延迟时间	LE-OUT	tpLH2	Rext=830 Ω		80	100	ns
(高电平到低电平)	OE-OUT	tpLH3	$V_L=4.5V$		115	135	ns
	CLK-SD0	tpLH	$R_L=100 \Omega$		20	40	ns
电流输出上升时	间	tor	C _L =10 _p F		160	180	ns
电流输出下降时	闰	tof			70	90	ns


十四、动态特性(VDD=3.3V)

十五、动态特性的测试电路

特性		代表符	测量条件	最小值	一般值	最大值	单位
	CLK-OUT	tpLH1			80	100	ns
延迟时间	LE-OUT	tpLH2	V _{DD} =3.3V		80	100	ns
(低电平到高电平)	OE-OUT	tpLH3	V _D S=1.0V		115	135	n
	CLK-SDO	tpLH	VIH=Vdd		20	40	ns
	CLK-OUT	tpLH1	V _{IL} =GND		80	100	ns
延迟时间	LE-OUT	tpLH2	Rext=830 Ω		80	100	ns
(高电平到低电平)	OE-OUT	tpLH3	$V\Gamma=3\Lambda$		115	135	ns
	CLK-SDO	tpLH	R _L =100 Ω		20	40	ns
电流输出上升沿时间		tor	C _L =10pF		160	180	ns
电流输出下降沿时		tof	4		70	90	ns



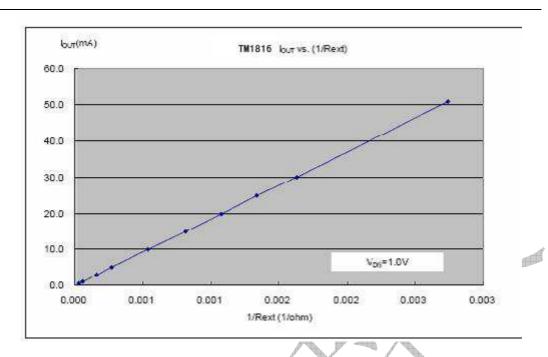


十七、应用信息

将 TM1816 应用与 LED 面板设计上时,通道间甚至芯片间的电流差异极小。此源于 TM1816 的优异特性:

- 1. 通道间的最大电流误差小于±3%, 而芯片间的最大电流误差小于±6%。
- 2. 另外, 当负载端电压(VDS)变化时, 其输出电流的稳定性不受影响, 如下图所示:

十八、调整输出电流


如下图所示,由外接一个电阻(Rext)调整输出电流(I_),套用下列公式可计算出输出电流值:

 $V_{R-EXT}=1.27V$

 $I_{\text{OUTI}} \stackrel{\text{ev}}{\text{R-EXT}} * (1/\text{Rext}) * 15$

 $Rext = (V_{R-EXT}^{/I}) *15$

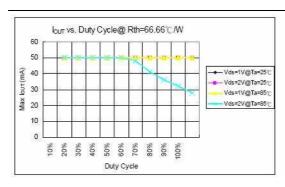
公式中的 V_{R-EXT} 是指R-EXT端的电压值,Rext是指外接至R-EXT端的值。当电阻值是 $744\,\Omega$,通过公式计算可得输出电流值25mA;当电阻值是 $1860\,\Omega$ 时,输出的电流则为10mA。

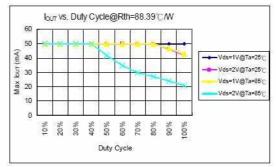
十九、封装散热功率 (PD)

封装的最大散热功率是由公式:

$$P_{D(max)} = \frac{(T_j - T_a)}{R_{th(j-a)}}$$
 来决定的

当 16 个通道完全打开时,实际功耗为


$$P_{\text{D(act)}} = I_{\text{DD}} * V_{\text{DD}} + I_{\text{OUT}} * Duty * V_{\text{DS}} * 16$$


实际功耗必须小于最大功耗, $\mathbb{D}P_{D(act)}^{P_{D(max)}}$,为了保持 $P_{D(act)}^{P_{D(max)}}$,输出的最大电流与占空比的关系为:

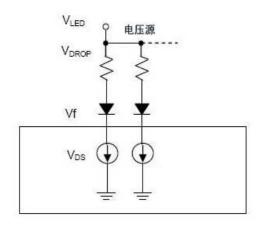
$$I_{\text{OUT}} = \frac{\left[\frac{(T_{\text{j}}\text{-}T_{\text{a}})}{R_{\text{th(j-a)}}} \text{-} I_{\text{DD}} \text{*}V_{\text{DD}} \right]}{V_{\text{DS}} \text{*} Duty \text{*} 16}$$
 其中 T_{j} 为 IC 的工作温度, T_{a} 为环境温度, V_{s} 为稳流输

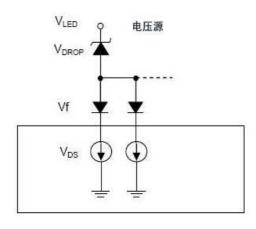
出端口电压, Duty 为占空比, Rth (j-a) 为封装的热阻。

下图为最大输出电流与占空比的关系:

如果需要更大的输出电流 [...,则需要加一定的散热片,其计算公式为

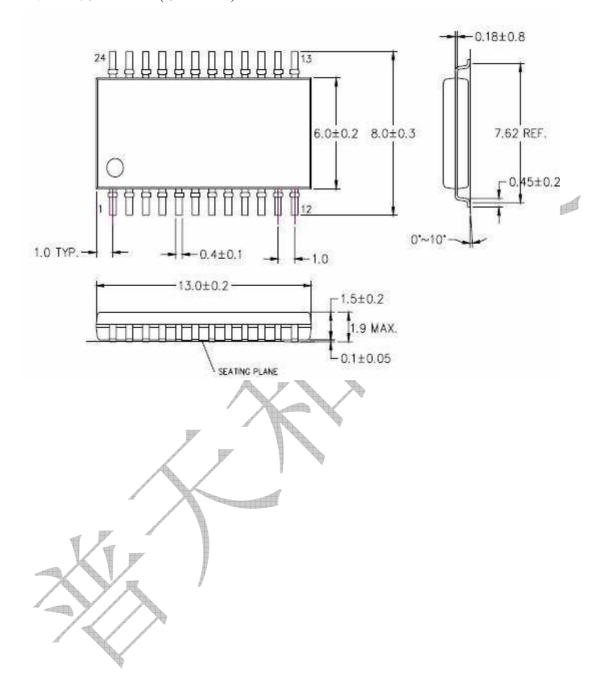
$$\pm \frac{1}{R_{\text{th(j-a)}}} + \frac{1}{R_{\text{fc}}} = \frac{P_{\text{D}}(\text{act})}{T_{\text{j-}}T_{\text{a}}} \not \exists \text{:}$$


$$R_{\text{fc}} = \frac{R_{\text{th(j-a)}} * \left(T_{\text{j-}} T_{\text{a}}\right)}{P_{D \, (\text{act})} * R_{\text{th(j-a)-}} T_{\text{j}} + T_{\text{a}}}$$


其中P_{D(act)}=I_{DD}*V_{DD}+I_{OUT}*Duty*V_{DS}*16

因此如果要输出更大的电流 I_{ω_1} ,由上面公式可以计算出必须给 IC 加热阻为 R_{ω} 的散热片

二十、 负载端供应电压(V_{LED})


为使封装体散热能力达到最佳化,建议输出端电压(V_s)的最佳工作范围是 $0.4V^{\circ}$ 0.8V(依据 $I_{out}=3^{\circ}$ 45mA)。如果 $V_{out}=V_{out}-V_{out}$ 且 $V_{out}=5V$ 时,此时过高的输出端电压(V_s)可能会导致 P_s (act) $> P_s$ (max);在此状况,建议尽可能使用较低的 V_{out} 电压供应,可用外串电阻或稳压管当做 V_{out} ,此可导致 $V_{out}=(V_{out}-V_{out})-V_{out}$,达到降低输出端电压(V_s)之效果。外串电阻或稳压管的应用图可参阅下图。

二十一、封装示意图

封装格式为:SSOP24(单位:mm)

